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Abstract-Assuming that micro-fracturing is the dominant mode of irreversible micro-structural
change, the internal degradation of a brittle material is described by a set of internal variables that
reflect the microcrack density and distribution. The kinetic equation for the crack evolution is
written assuming the existence of a flow potential (damage surface). Predictions of the theory are
compared with the microscopic and macroscopic experimental observations on rock. Also, it is
shown that for a fixed crack distribution the symmetry of the stiffness tensor varies with the applied
stress.

1. INTRODUCTION

In general, deformation of a solid is accompanied by micro-structural rearrangements in
the form of crystalline slip, twinning, diffusion and microcracking. These changes in the
microstructure alter the thermo-mechanical properties (stiffness, thermal conductivity, etc.)
of the solid. Macroscopically, these changes are manifested by the nonlinearity and irre­
versibility of the response. This study is based on the premise that the predictive ability of
a constitutive theory will, in general, be proportional to the degree to whicb it models the
underlying microstructure and its kinetics. In this paper, phenomenological constitutive
equations for the mechanical response of a solid progressively weakened by an arbitrary
distribution of microcracks are presented. The microcracks are assumed to be plane and
flat and ofcharacteristic dimension small enough to allow for a representation by continuum
variables.

The loading process is assumed to be isothermal and quasi-static, and the material rate
insensitive. The proposed formulation can be applied to the prediction of the pre-failure
response ofbrittle solids such as rocks and concrete under multi-axial and non-proportional
loading conditions.

2. INTERNAL VARIABLES

It is important that not only the internal variables are uniquely defined by the micro­
structural arrangement, but also a given set of the internal variables should define a
macroscopically unique state. This cannot be easily achieved if the values of the internal
variables are defined to be stress dependent. For example, in an elastic solid, cracks subjected
to pure compression across their normal cause no discontinuity in the displacement field
or reduction in the stiffness. Consequently, a variable defined as a function of change in
the stiffness or ofdisplacement discontinuity due to cracks cannot differentiate a solid with
cracks under compression from the one without cracks.

In the present formulation, we employ a continuum internal variable representation
of microcracks proposed by Krajcinovic (1985), which meets the above uniqueness con­
dition and has a direct physical meaning. Consider a continuum point in a solid permeated
by numerous plane flat microcracks. Since a continuum point is endowed with the average
properties of the surrounding material of finite volume, in general, it is possible that
microcracks ofdifferent orientations be simultaneously present at a point. Hence, a function
w(N) of orientation (where N is a crack orientation vector which varies over a unit sphere
of orientations and w(N) is some volume average of the area of the cracks with the normal
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N) can he dell ned as the internal state variahle that descrihes the microcrack distrihution.
Since orientation of a crack can be taken either as N or as - N, it follows that
w(N) = w( - N). To facilitate the computations, instead of the continuous function of
orientation w(N), the values of that function, Wi, w 2, ... ,w", at a finite number (say n) of
a priori selected orientations, N 1, N 2, ... , N", are taken as the internal state variables.
These orientation vectors are taken to be uniformly distributed over a unit hemisphere of
orientations which is fixed in the material coordinate system. The questions of scale and of
averaging of microcrack distribution into continuum variables are discussed in Krajcinovic
(1985).

3. GOVERNING EQUATIONS

Assuming small deformation and restricting the discussion to a homogeneous
temperature distribution and isothermal processes, the state of the material is defined by
the strain tensor I: and the set of internal variables [(Wi, N~, i = 1, ... ,n] which describe
the microcrack distribution. The response functions of interest, stress a and the Helmholtz
free energy ljJ, are, therefore, of the following form:

a=o-[I:;(wi,Ni),i= l, ,n]

ljJ = ljJ[&;(wi,N'),i= I, ,n].
(1)

The forms of the above response functions are not independent since they must satisfy the
Clausius-Duhem inequality, which for the present purpose can be written as follows:

(2)

where p is the mass density while (j denotes increment.
Substituting eqns (1) in inequality (2), it follows that

(3)

Following the arguments of Coleman and Gurtin (1967), we assume that the strain I: can
be varied independent of (jw i

. Thus inequality (3) is satisfied for arbitrary &, if

8ljJ
(4)(JIJ = PaeIJ

and

'LRi(jWi ~ 0 (5)

where

. 8ljJ
(6)R' = -p-.

8w'

is the thermodynamic force conjugate to w'.
The reduced form of the Clausius-Duhem inequality (5) implies that energy dissipation

associated with any change in the microcrack distribution is always non-negative. Since
using eqn (4) stress a can be computed from ljJ, the formulation will be complete providing
that the specific constitutive assumptions can be made for the form of the Helmholtz free
energy and for the evolution of the internal variables.
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4. APPLICAnON TO ROCK

Scanning electron microscope observations (Sprunt and Brace, 1974; Tapponnier and
Brace, 1976; Wong, 1982) of specimens of rock stressed below peak stress show that the
microcracking is the predominant stress induced change in the microstructure of the rock.
Numerous cracks are observed in a volume offew grains. Consequently, preceding the stress
failure the size and the number ofmicrocracks would admit a continuum representation, and
the present formulation would be valid in that range. In general, beyond the peak stress
the microcracks coalesce to form macrocracks which henceforth dominate the response of
the material.

4.1. Helmholtz free energy (HFE)
Virgin rock is assumed to be initially isotropic; and since the strain at the peak stress

is typically of the order of I %, the change in the mass density is neglected. Though a small
hysteresis is observed in unloading and reloading, to focus on the main aspect of the theory,
it is postulated that the response is linear in the absence of a change in the density and
distribution of microcracks. Hence, as stress is a first-order derivative of HFE with respect
to strain (see eqn (4», the HFE must be second order in strain. .

To arrive at a particular form ofHFE, it is necessary to consider both microscopic and
ma(:roscopic experimental observations (Wawersik and Brace, 1971). In a brittle specimen
subjected to uniaxial compression, microcracks first form on the planes that are nearly
parallel to the axis ofcompression (AOC). Upon further loading, cracks form on the planes
adjacent to above planes and on the planes inclined at about 45° to the AOC. The Cl"6il:.:k
density has a global maximum on the planes parallel to the AOC, which are planes of
maximum tensile strain but zero tensile stress; and a local maximum on the planes inclined
at 45° to AOC, which are planes ofmaximum shear strain. Further, it is noticed that cracks
parallel to the AOC contribute to the reduction in the axial stiffness and induce volumetric
dilatancy. Since no tensile stress is applied across the planes parallel to the AOC, the
prediction of the formation and the growth of microcracks in these planes and of their
influence on the axial stiffness employing linear fracture theories are not obvious. Actually,
the cracks in planes parallel to the AOC are associated either with the fluctuations ofstresses
about their expected value (Costin, 1983) or with kinking of the original mode II cracks
(Nemat-Nasser and Horii, 1982). However, from a phenomenological point of view, it is
assumed that the energy associated with a crack is related to tensile strain and shear strain
rather than tensile stress and shear stress. The HFE can therefore be written using the
isotropic invariants of Il and [(Q/, Ni

), i = 1, ... , nJ (Spencer, 1971)

where A, p. are Lame's constants, C h C2 the material parameters associated with cracks,
and ( ) Macaulay's bracket defined as

{
I, if x> 0

(x) = 0, otherwise.

Since N i is a unit vector, the quantities within the first and second square brackets in
eqn (7) are squares of the normal (tensile) and shear strain on the plane with the normal
N i

, respectively. Energy associated to the compressive strain over the faces of the cracks
is taken to be zero. Despite the fact that the cracks impose a one-sided constraint on the
displacement discontinuity, the stress-strain relation should be continuous. Differentiating
with respect to B, one can verify that the proposed form of tit is indeed C I continuous.

Lame's coefficients, land p., are taken to be constant such that the first two terms on
the right-hand side of eqn (7) correspond to the response of the solid in its virgin state. As
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the energy storing capacity of a solid is diminished by the presence of cracks, the sum of
the last two terms in eqn (7) should be non-positive. Since normal strain and shear strain
on a crack can be varied independently, each of the above two terms in eqn (7) should be
non-positive by itself. Moreover, since the crack density Wi is non-negative and the terms
within the brackets are the squares of the normal and shear strain, it follows that the
material parameters CI and C2 should be non-positive.

Substituting eqn (7) in eqn (4) we obtain

(8)

where K is the stiffness tensor given by

KIJKL = )'lJIJ~KL +Jl(~/KJJL +J/LJJK)+2C I LWiH(z)N~N~N~N~
i

{
I, if N~eKLNL > 0

H(i) =
0, otherwise.

The stiffness tensor K has the following symmetries:

(10)

Since in the third term on the right-hand side of eqn (9) the contribution of cracks
under compression vanishes, the load induced anisotropy is reflected in eqn (9). For
example, consider an isotropic distribution of microcracks, i.e. Wi = w 2 = ... = wn = w.
Under hydrostatic tension all the cracks will experience tensile strain. In this case, from eqn
(9), the stiffness tensor will be isotropic and takes the following form :

However, in uniaxial compression along the XI-axis, the cracks the plane normals of which
subtend an angle less than sin- I [1 +V]-1/2 with the XI-axis will experience compressive
strain (here v is the apparent Poisson's ratio). In this case the stiffness tensor ceases to be
isotropic and becomes transversely isotropic, and is expressed as

where

a= (_v)5/2.
1+v '
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Fig. 1. Typical variation of the conjugate thennodynamic force R with orientation O.

The remaining non-zero terms in K are obtained from the symmetry conditions as in eqn
(10).

From eqns (6) and (7), the conjugate thermodynamic force can be written as

() ))

Since under uniaxial loading of an unconfined rock specimen the maximum microcrack
density occurs in the planes perpendicular to the maximum tensile strain, the conjugate
thermodynamic force must also have a maximum at these planes. This places the following
restriction on the material parameters (Ilankamban, 1985):

where Vm is the minimum apparent Poisson's ratio in uniaxial compression. Typical variation
of the thermodynamic force of microcracking as a function of orientation, under uniaxial
compression and tension, is shown in Fig. 1. From eqn (8), the stress increment can be
written as

where

f>uu = K1JKL />eKL +L A~J fJed
i

i a (a",) a (a",) aRi

Au = aai Paeu ~ aeu Paw' = - aeu
= -2CI<N~eKLNDN}N~

- C2[N~eKIN~+N~eKJN~ - 2(N~eKLNDN~N~].

(12)

(13)

4.2. Kinetics of crack growth
Acoustic emission experiments on geo-materials (Holcomb, 1984) clearly show that

there exists a finite region in strain (stress) space within which only elastic change occurs.
The additional microcracking occurs only when loaded beyond that elastic region. Based
on these observations, the following assumptions can be made:
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(I) There exists a surface 9 = 0, in the strain space, which separates the elastic domain
(bw i == °for all i) from the inelastic domain. It is further assumed that gdepends on the
strain & only through the thermodynamic force conjugate to Wi, i.e.

g=g[(w',R',N'), i=L ... ,n]. ( 14)

Since R i is an energy release rate, eqn (14) is an energy criterion for crack growth. The
equation 9 = °represents the "damage surface" in the n-dimensional space of thermo­
dynamic forces, enveloping the locus of all states which can be reached without
dissipating energy.

(2) The crack growth is stable in the following sense

(15)

where Sj is an initial state, S2 any state achievable from Sj, and R i
\ the conjugate force at

state S I.

It can be noted that condition (IS) is similar to Drucker's stability condition (Drucker,
1959) for a rigid plastic material. Following the arguments of the theory of plasticity, and
identifying R i with stress and Wi with strain, it can be concluded that 9 is convex and the
increments of Wi are normal to the surface 9 = 0, i.e.

(16)

C={l, ifg=oand~C7;mbRm)~O
0, otherwise.

It is assumed that further growth of cracks in a plane with the orientation Ni is possible
when

(17)

where £}pi is a threshold parameter dependent on the state of microcracking. The form of
9ti in eqn (17) defines the rate of crack growth with respect to loading and the degree of
interaction between microcracks at different orientations. This can be compared with slips
on the crystallographic plane, where slip on one plane affects (typically increases) the slip
resistance of the adjacent planes (Hutchinson, 1976). However, in the absence of any
experimental guidance, here it is assumed that the interaction is negligible. Thus from eqn
(17)

(18)

Geometrically, constraints (18) (written for all j = I, ... , n) define a polyhedral surface
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Fig. 2. The damage surface in the conjugate thermodynamic force space.

consisting of hyper-planes, which is illustrated for n = 2 in Fig. 2. For an initially isotropic
material, the form of [fIj will be identical for allj = 1, ... , n. In view of the strongly non­
linear character of the process, a reasonable form of eqn (18) is

(19)

where p and [flo are material parameters and Ais Lame's coefficient introduced as a non­
dimensionalizing factor. The constant [fI 0 defines the onset of microcracking in a plane.

From eqns (16) and (19), the increment in the crack density is

where ci is the loading index defined as

. {I, if i = 0 and (oi/oR i
) ~Ri ~ 0

c' -
- 0, otherwise.

(20)

(21)

From eqns (20) and (II), the increment in the crack density can be written in terms of the
increment in strain as

(22)

where

Substituting eqn (22) in eqn (12), the incremental stress-strain relation is obtained as

(23)

where

During loading, both terms on the right-hand side ofeqn (23) contain non-zero terms.
During unloading, only the first term contributes to the stiffness. However, the elements of
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Table I

Material
parameters Umt Quartzite Norite

i. MPa 1.36 x 10'0 6.36 x 10'"
/1 MPa 2.333 0.667

C,ji. -84.5 -35.0
C,!i. -5.91 -2.10
9£0 1.90 x 10- 2 7.80 x 10- 2

P 0.15 0.15
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Fig. 3. Comparison of the analytical and the experimental results for norite in uniaxial compression.

the tensor K, while constant during unloading, are the functions of the already accumulated
damage. Consequently, the unloading segment of the stress-strain curve, while straight, is
not parallel to the initial segment of the initial loading.

4.3. Results
The computations were performed for two types of rocks, Witwatersrand quartzite

and norite, and compared with experimental data (Bienawski et al., 1969; Crouch, 1970)
to the extent available. The hemisphere of orientation is divided into elementary surfaces
with an approximately equal solid angle of n/250 and one microcrack system (w, N) is
assigned to each division. The material parameters of the considered materials are arranged
in Table 1. The parameters C h C2, and p were selected such that the calculated results
present a best fit of the experimental data. The parameter 9lo was obtained from the
condition that the onset of microcracking corresponds to the stress level at which the
material starts exhibiting nonlinearity.

The details of the stress-strain relationship ~ere replicated with a high degree of
accuracy for compression (Figs 3 and 4). The volumetric strain in compression reaches its
maximum at approximately 85-90% of the maximum stress as observed in most of the
experiments. The influence of the lateral confinement is plotted in Fig. 5. The increase of
strength with lateral pressure follows the trends reported in the literature (Paterson, 1978).
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Fig. 6. Variation of axial and volumetric strain in uniaxial tension for quartzite.

The computed ratio of compressive to tensile strength is nearly ten (Fig. 6) as found in the
experiments.

An especially important feature of the proposed model is its ability to predict the
patterns of the microcrack distribution. The distribution of microcracks (normalized by the
maximum density) is shown in Figs 7 and 8. In case of uniaxial compression the microcrack
distribution has two maxima: the global corresponding to splitting and the local associated
with shear, as found from experiments (Wawersik and Brace, 1971). The computed relative
strength of the two maxima is within 10% of the experimental observations. The growth
of microcracks with stress, in planes of various orientations, is plotted in Figs 9 and 10.
Near the failure, the microcrack growth accelerates rapidly over a large range of orienta­
tions. This is in accord with the experiments (Wong, 1982), that a substantial increase in
the crack density in a wide range of orientations is instrumental in forming links between
the cracks which lead to faulting.

The computed biaxial tension-<:ompression strength envelope (Fig. 11) shows basically
most of the observed trends (Kupfer et al., 1969; Akai and Mori, 1970; Brown, 1974). The
model underestimates the biaxial compressive strength, indicating that the phenomena
neglected (crack interaction, friction, etc.) may be more important than assumed. However,
it has been suggested (Avram et al., 1981) that the strength in biaxial compression is very
sensitive to the conditions at the specimen interface with the loading device, and the use of
a more sophisticated loading device lowers the strength in biaxial compression.

5. SUMMARY AND CONCLUSIONS

The proposed analytical model is developed within the framework of the continuum
"damage" theory (Krajcinovic, 1985) based on the thermodynamics with internal variables.
Even though the model is phenomenological in nature and relates the average values of
the stress and strain, the physical insight into the phenomenon is retained to a remarkable
degree through the selection of the internal variables. As a result, the model is able to
replicate not only the major trends of the mechanical response but also the details related
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Fig. 7. Microcrack distribution at different load levels in uniaxial compression for quartzite:
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to microcrack patterns, volumetric strains, etc. This, naturally, lends some credence to the
expectation related to applications of this model to problems involving more complicated
geometries, stress distributions, etc. The softening part of the stress-strain curve can be
readily obtained by the proposed model. However, since in the post peak region microcracks
coalesce to macrocracks and the heterogeneity of the deformation becomes important, the
veracity of those results are questionable.
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